Tomamos como centro de la elipse el centro de coordenadas y los ejes de la elipse como ejes de coordenadas. Las coordenadas de los focos son:
F'(-c,0) y F(c,0)
Cualquier punto de la elipse cumple:
Esta expresión da lugar a:
Realizando las operaciones llegamos a:
Hallar los elementos característicos y la ecuación reducida de la elipse de focos: F'(-3,0) y F(3, 0), y su eje mayor mide 10.
Semieje mayor
Semidistancia focal
Semieje menor
Ecuación reducida
Excentricidad
Si el eje principal está en el de ordenadas se obtendrá la siguiente ecuación:
Las coordenadas de los focos son:
F'(0, -c) y F(o, c)
Dada la ecuación reducida de la elipse , hallar las coordenadas de los vértices de los focos y la excentricidad.
Si el centro de la elipse C(x0,y0) y el eje principal es paralelo a OX, los focos tienen de coordenadas F(X0+c, y0) y F'(X0-c, y0). Y la ecuación de la elipse será:
Al quitar denominadores y desarrollar se obtiene, en general, una ecuación de la forma:
Donde A y B tienen el mismo signo.
Hallar la ecuación de la elipse de foco F(7, 2), de vértice A(9, 2) y de centro C(4, 2).
Dada la elipse de ecuación , hallar su centro, semiejes, vértices y focos.
Si el centro de la elipse C(x0,y0) y el eje principal es paralelo a OY, los focos tienen de coordenadas F(X0, y+c) y F'(X0, y0-c). Y la ecuación de la elipse será: